Generalized linear models (GLMs) are used within a vast number of application domains. However, formal goodness of fit (GOF) tests for the overall fit of the model$-$so-called "global" tests$-$seem to be in wide use only for certain classes of GLMs. In this paper we develop and apply a new global goodness-of-fit test, similar to the well-known and commonly used Hosmer-Lemeshow (HL) test, that can be used with a wide variety of GLMs. The test statistic is a variant of the HL test statistic, but we rigorously derive an asymptotically correct sampling distribution of the test statistic using methods of Stute and Zhu (2002). Our new test is relatively straightforward to implement and interpret. We demonstrate the test on a real data set, and compare the performance of our new test with other global GOF tests for GLMs, finding that our test provides competitive or comparable power in various simulation settings. Our test also avoids the use of kernel-based estimators, used in various GOF tests for regression, thereby avoiding the issues of bandwidth selection and the curse of dimensionality. Since the asymptotic sampling distribution is known, a bootstrap procedure for the calculation of a p-value is also not necessary, and we therefore find that performing our test is computationally efficient.
翻译:通用线性模型(GLMS)用于许多应用领域。然而,对于模型($-所谓的“Global”测试)的总体适用性,我们开发并应用了一套新的全球通用线性模型(GLMS),类似于众所周知和常用的Hosmer-Lemeshow(HL)测试,可以广泛使用各种GLMS(HL)测试。测试统计数据是HL测试统计的一种变体,但我们严格地用Stute和Zhu(2002年)的方法对测试统计的抽样分布进行简单无误的抽样分析。我们的新测试相对直接地用于执行和解释GLMS的某些类别。我们开发并应用了一套新的全球通用光性测试,类似于众所周知和常用的Husmer-Lemeshow(HL)测试,发现我们的测试在各种模拟环境中提供了竞争性或可比的力量。我们的测试还避免了使用基于内核的测量器,而我们使用各种GOF测试来进行回归的测试,但我们严格地得出了测试数据的抽样分布。我们所知道的测重的测算方法,因此,进行测算的测算的测算也是一种必要的测算方法,因为测算的测算是进行测算的测算的测算,因此测算的测算的测算过程的测算也是一种必要的测算。