Generalized linear models (GLMs) are used within a vast number of application domains. However, formal goodness of fit (GOF) tests for the overall fit of the model$-$so-called "global" tests$-$seem to be in wide use only for certain classes of GLMs. In this paper we develop and apply a new global goodness-of-fit test, similar to the well-known and commonly used Hosmer-Lemeshow (HL) test, that can be used with a wide variety of GLMs. The test statistic is a variant of the HL test statistic, but we rigorously derive an asymptotically correct sampling distribution of the test statistic using methods of Stute and Zhu (2002). Our new test is relatively straightforward to implement and interpret. We demonstrate the test on a real data set, and compare the performance of our new test with other global GOF tests for GLMs, finding that our test provides competitive or comparable power in various simulation settings. Our test also avoids the use of kernel-based estimators, used in various GOF tests for regression, thereby avoiding the issues of bandwidth selection and the curse of dimensionality. Since the asymptotic sampling distribution is known, a bootstrap procedure for the calculation of a p-value is also not necessary, and we therefore find that performing our test is computationally efficient.


翻译:通用线性模型(GLMS)用于许多应用领域。然而,对于模型($-所谓的“Global”测试)的总体适用性,我们开发并应用了一套新的全球通用线性模型(GLMS),类似于众所周知和常用的Hosmer-Lemeshow(HL)测试,可以广泛使用各种GLMS(HL)测试。测试统计数据是HL测试统计的一种变体,但我们严格地用Stute和Zhu(2002年)的方法对测试统计的抽样分布进行简单无误的抽样分析。我们的新测试相对直接地用于执行和解释GLMS的某些类别。我们开发并应用了一套新的全球通用光性测试,类似于众所周知和常用的Husmer-Lemeshow(HL)测试,发现我们的测试在各种模拟环境中提供了竞争性或可比的力量。我们的测试还避免了使用基于内核的测量器,而我们使用各种GOF测试来进行回归的测试,但我们严格地得出了测试数据的抽样分布。我们所知道的测重的测算方法,因此,进行测算的测算的测算也是一种必要的测算方法,因为测算的测算是进行测算的测算的测算,因此测算的测算的测算过程的测算也是一种必要的测算。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年4月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员