We introduce a framework of the equivariant convolutional algorithms which is tailored for a number of machine-learning tasks on physical systems with arbitrary SU($d$) symmetries. It allows us to enhance a natural model of quantum computation--permutational quantum computing (PQC) [Quantum Inf. Comput., 10, 470-497 (2010)] --and defines a more powerful model: PQC+. While PQC was shown to be effectively classically simulatable, we exhibit a problem which can be efficiently solved on PQC+ machine, whereas the best known classical algorithms runs in $O(n!n^2)$ time, thus providing strong evidence against PQC+ being classically simulatable. We further discuss practical quantum machine learning algorithms which can be carried out in the paradigm of PQC+.
翻译:我们引入了“等量进量算法”框架,这个框架是专为具有任意的SU(d$)对称物理系统的若干机器学习任务而设计的。它使我们能够加强量量计算-异质量计算(PQC)的自然模型[量子 Inf.comput., 10, 470-497(2010)] -- -- 并定义了一个更强大的模型:PQC+。虽然PQC被证明是可按传统方式有效模拟的,但我们展示了一个在PQC+机器上可以有效解决的问题,而最著名的古典算法以$(n.n ⁇ 2)的时间运行,从而提供了有力的证据,证明PQC+是典型的模拟。我们进一步讨论了在PQC+模式下可以实施的实用的量量机学习算法。