Image reconstruction for positron emission tomography (PET) is challenging because of the ill-conditioned tomographic problem and low counting statistics. Kernel methods address this challenge by using kernel representation to incorporate image prior information in the forward model of iterative PET image reconstruction. Existing kernel methods construct the kernels commonly using an empirical process, which may lead to unsatisfactory performance. In this paper, we describe the equivalence between the kernel representation and a trainable neural network model. A deep kernel method is then proposed by exploiting a deep neural network to enable automated learning of an improved kernel model and is directly applicable to single subjects in dynamic PET. The training process utilizes available image prior data to form a set of robust kernels in an optimized way rather than empirically. The results from computer simulations and a real patient dataset demonstrate that the proposed deep kernel method can outperform the existing kernel method and neural network method for dynamic PET image reconstruction.
翻译:红外线排放断层造影(PET)的图像重建具有挑战性,因为有不成熟的断层成像问题和低计统计。内核方法应对这一挑战,使用内核表示法将图像先前信息纳入迭接的PET图像重建前型模型中。现有的内核方法通常使用实验过程来构造内核,这可能导致不令人满意的性能。在本文中,我们描述了内核表示法和可训练神经网络模型之间的等值。然后,通过利用深神经网络来自动学习改良的内核模型,提出深内核方法,直接适用于动态PET中的单个主题。培训过程利用现有的先前图像数据,以优化的方式而不是经验方式形成一套坚固的内核。计算机模拟的结果和真正的病人数据集表明,拟议的深内核方法可以超越动态的PET图像重建的现有内核方法和神经网络方法。