Place recognition and visual localization are particularly challenging in wide baseline configurations. In this paper, we contribute with the \emph{Danish Airs and Grounds} (DAG) dataset, a large collection of street-level and aerial images targeting such cases. Its main challenge lies in the extreme viewing-angle difference between query and reference images with consequent changes in illumination and perspective. The dataset is larger and more diverse than current publicly available data, including more than 50 km of road in urban, suburban and rural areas. All images are associated with accurate 6-DoF metadata that allows the benchmarking of visual localization methods. We also propose a map-to-image re-localization pipeline, that first estimates a dense 3D reconstruction from the aerial images and then matches query street-level images to street-level renderings of the 3D model. The dataset can be downloaded at: https://frederikwarburg.github.io/DAG
翻译:在宽度基线配置中,地点识别和视觉定位特别具有挑战性。在本文中,我们贡献了 emph{Danish Airs and Grounds} (DAG) 数据集,大量收集针对此类案例的街道和航空图像,其主要挑战在于查询和参考图像之间的极端观察角差异,随之而来的光化和视角的变化。数据集比目前公开提供的数据大,而且更加多样化,包括城市、郊区和农村地区50多公里的道路。所有图像都与精确的6-DoF元数据相关,从而可以对视觉定位方法进行基准化。我们还提出了一个地图到图像的重新定位管道,其中首先估计从空中图像进行密集的三维重建,然后将查询街道图像与3D模型的街道图像相匹配。数据集可在以下下载:https://frederikwarburg.github.io/DAG。