While the equality of differential signatures (Calabi et al, Int. J. Comput. Vis. 26: 107-135, 1998) is known to be a necessary condition for congruence, it is not sufficient (Musso and Nicolodi, J. Math Imaging Vis. 35: 68-85, 2009). Hickman (J. Math Imaging Vis. 43: 206-213, 2012, Theorem 2) claimed that for non-degenerate planar curves, equality of Euclidean signatures implies congruence. We prove that while Hickman's claim holds for simple, closed curves with simple signatures, it fails for curves with non-simple signatures. In the later case, we associate a directed graph with the signature and show how various paths along the graph give rise to a family of non-congruent, non-degenerate curves with identical signatures. Using this additional structure, we formulate congruence criteria for non-degenerate, closed, simple curves and show how the paths reflect the global and local symmetries of the corresponding curve.
翻译:虽然不同签名的平等性(Calabi等人,Int. J. Comput. Vis. 26: 107-135, 1998年)被认为是一致性的必要条件,但这还不够(Musso和Nicolodi, J. Math Imaging Vis. 35: 68-85, 2009年)。 Hickman(J. Math Imaging Vis. 43: 206-213, 2012, Theorem 2)声称,对于非变性平面曲线而言,Euclidean 签名的平等性意味着一致性。我们证明,虽然Hickman的主张持有简单、封闭的曲线和简单签名,但对于非简单签名的曲线却失败。在后一种情况下,我们将定向图形与签名联系起来,并展示图上的各种路径是如何形成一个具有相同签名的非聚合性、非变性曲线的组合。我们使用这一额外结构,为非变性、封闭、简单曲线制定一致性标准,并展示路径如何反映对应曲线的全球和局部性。