Power system simulations that extend over a time period of minutes, hours, or even longer are called extended-term simulations. As power systems evolve into complex systems with increasing interdependencies and richer dynamic behaviors across a wide range of timescales, extended-term simulation is needed for many power system analysis tasks (e.g., resilience analysis, renewable energy integration, cascading failures), and there is an urgent need for efficient and robust extended-term simulation approaches. The conventional approaches are insufficient for dealing with the extended-term simulation of multi-timescale processes. This paper proposes an extended-term simulation approach based on the holomorphic embedding (HE) methodology. Its accuracy and computational efficiency are backed by HE's high accuracy in event-driven simulation, larger and adaptive time steps, and flexible switching between full-dynamic and quasi-steady-state (QSS) models. We used this proposed extended-term simulation approach to evaluate bulk power system restoration plans, and it demonstrates satisfactory accuracy and efficiency in this complex simulation task.


翻译:由于电力系统演变成复杂的系统,其相互依存性和动态行为在各种时间尺度上越来越丰富,因此,许多动力系统分析任务(例如复原力分析、可再生能源整合、级联失灵)需要长期模拟,而且迫切需要有效和稳健的长期模拟方法。常规方法不足以应对多时间尺度流程的长期模拟。本文件提议采用基于全态嵌入方法的长期模拟方法。其准确性和计算效率得到高超在事件驱动模拟、较大和适应性时间步骤以及全动力和准稳定状态(QSS)模型之间灵活转换的高精度支持。我们使用这一拟议的长期模拟方法来评价大容量动力系统恢复计划,并在这一复杂的模拟任务中显示出令人满意的准确性和效率。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
53+阅读 · 2020年9月7日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Arxiv
0+阅读 · 2021年5月31日
Arxiv
0+阅读 · 2021年5月30日
Arxiv
0+阅读 · 2021年5月28日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Top
微信扫码咨询专知VIP会员