Energy management is a critical aspect of risk assessment for Uncrewed Aerial Vehicle (UAV) flights, as a depleted battery during a flight brings almost guaranteed vehicle damage and a high risk of human injuries or property damage. Predicting the amount of energy a flight will consume is challenging as routing, weather, obstacles, and other factors affect the overall consumption. We develop a deep energy model for a UAV that uses Temporal Convolutional Networks to capture the time varying features while incorporating static contextual information. Our energy model is trained on a real world dataset and does not require segregating flights into regimes. We illustrate an improvement in power predictions by $29\%$ on test flights when compared to a state-of-the-art analytical method. Using the energy model, we can predict the energy usage for a given trajectory and evaluate the risk of running out of battery during flight. We propose using Conditional Value-at-Risk (CVaR) as a metric for quantifying this risk. We show that CVaR captures the risk associated with worst-case energy consumption on a nominal path by transforming the output distribution of Monte Carlo forward simulations into a risk space. Computing the CVaR on the risk-space distribution provides a metric that can evaluate the overall risk of a flight before take-off. Our energy model and risk evaluation method can improve flight safety and evaluate the coverage area from a proposed takeoff location. The video and codebase are available at https://youtu.be/PHXGigqilOA and https://git.io/cvar-risk .
翻译:能源管理是无人驾驶航空飞行器(UAV)飞行风险评估的一个重要方面,因为飞行中耗竭的电池几乎保证了车辆的损坏,造成人员伤亡或财产损害的风险很高。预测飞行消耗的能源量具有挑战性,因为航程、天气、障碍和其他因素会影响总消耗量。我们为无人驾驶飞行器开发了一个深度能源模型,该飞行器使用Temal Convolutional Network(CVAR)来捕捉不同时段的特征,同时纳入静态背景信息。我们的能源模型是用真实的世界数据集培训的,不需要将航班分离成制度。我们用测试飞行时的电力预测值提高了29美分,与最先进的分析方法相比,我们用测试飞行时的电力预测值提高了29美分。我们使用能源模型可以预测特定轨迹的能源使用量,并评估飞行时电池在飞行过程中耗耗耗耗耗的耗电量风险。 我们提议使用 Conditional valal-at-risk (CVAR) 来量化这一风险。我们显示CVAR评估与最差的能源消耗有关风险的风险,在Ctreal-LAVAVLleval-leval Leval Leval Leval Leval 和Creal lieval Leval 风险分配法在Creal dreal dreal seval dreal dreal lavivaldal disal sreal sreal ex sreal ex salvialvial ex seval ex sevalvadalvadalvadalvadal ex seval ress ress ress ex lavivaldre ress ress sre ress sal lavial ladal lavial ladal ladal ladal ladal ladal ladal ladal lad ladal ladal ex ex ladre ladal ladal ladal ladal ladre ladal ladal ladre ladal ladal ladal ex ex ladre ladal