The inverse source problem arising in photoacoustic tomography and in several other coupled-physics modalities is frequently solved by iterative algorithms. Such algorithms are based on the minimization of a certain cost functional. In addition, novel deep learning techniques are currently being investigated to further improve such optimization approaches. All such methods require multiple applications of the operator defining the forward problem, and of its adjoint. In this paper, we present new asymptotically fast algorithms for numerical evaluation of the forward and adjoint operators, applicable in the circular acquisition geometry. For an $(n \times n)$ image, our algorithms compute these operators in $\mathcal{O}(n^2 \log n)$ floating point operations. We demonstrate the performance of our algorithms in numerical simulations, where they are used as an integral part of several iterative image reconstruction techniques: classic variational methods, such as non-negative least squares and total variation regularized least squares, as well as deep learning methods, such as learned primal dual. A Python implementation of our algorithms and computational examples is available to the general public.
翻译:暂无翻译