Malicious URL detection is an emerging research area due to continuous modernization of various systems, for instance, Edge Computing. In this article, we present a novel malicious URL detection technique, called deepBF (deep learning and Bloom Filter). deepBF is presented in two-fold. Firstly, we propose a learned Bloom Filter using 2-dimensional Bloom Filter. We experimentally decide the best non-cryptography string hash function. Then, we derive a modified non-cryptography string hash function from the selected hash function for deepBF by introducing biases in the hashing method and compared among the string hash functions. The modified string hash function is compared to other variants of diverse non-cryptography string hash functions. It is also compared with various filters, particularly, counting Bloom Filter, Kirsch \textit{et al.}, and Cuckoo Filter using various use cases. The use cases unearth weakness and strength of the filters. Secondly, we propose a malicious URL detection mechanism using deepBF. We apply the evolutionary convolutional neural network to identify the malicious URLs. The evolutionary convolutional neural network is trained and tested with malicious URL datasets. The output is tested in deepBF for accuracy. We have achieved many conclusions from our experimental evaluation and results and are able to reach various conclusive decisions which are presented in the article.
翻译:恶意 URL 检测是一个新兴的研究领域, 原因是各种系统持续现代化, 例如, Edge Econter 。 在此文章中, 我们展示了一种新颖的恶意 URL 检测技术, 叫做深B( 深学习和闪烁过滤器) 。 深B 。 首先, 我们提出使用二维闪烁过滤器进行学习的 Bloom 过滤器 。 我们实验性地决定最佳的非加密字符串散列功能 。 然后, 我们从选中的散列法中引入偏差, 并比较字符串的散列功能, 从而为深库获取一个修改的非加密字符串检测机制 。 我们使用进化的神经网络来识别恶意的 URL 。 修改后的字符串功能将与其他不同的非加密字符串功能变量进行比较 。 此外, 我们还将各种过滤器, 计数 Bloom 过滤器 、 Kirsch \ textitutit{et al.} 和 Cuckoocuoo 过滤器 功能 功能 。 然后, 我们建议用深 BFEB 测试了一种恶意神经网络 的精确度分析结果, 。 我们测试了各种实验结果 。