The deep learning revolution has greatly been accelerated by the 'hardware lottery': Recent advances in modern hardware accelerators and compilers paved the way for large-scale batch gradient optimization. Evolutionary optimization, on the other hand, has mainly relied on CPU-parallelism, e.g. using Dask scheduling and distributed multi-host infrastructure. Here we argue that also modern evolutionary computation can significantly benefit from the massive computational throughput provided by GPUs and TPUs. In order to better harness these resources and to enable the next generation of black-box optimization algorithms, we release evosax: A JAX-based library of evolution strategies which allows researchers to leverage powerful function transformations such as just-in-time compilation, automatic vectorization and hardware parallelization. evosax implements 30 evolutionary optimization algorithms including finite-difference-based, estimation-of-distribution evolution strategies and various genetic algorithms. Every single algorithm can directly be executed on hardware accelerators and automatically vectorized or parallelized across devices using a single line of code. It is designed in a modular fashion and allows for flexible usage via a simple ask-evaluate-tell API. We thereby hope to facilitate a new wave of scalable evolutionary optimization algorithms.
翻译:“硬盘彩票”大大加速了深层次的学习革命:现代硬件加速器和编集器的最新进步为大规模批量梯度优化铺平了道路。另一方面,进化优化主要依赖CPU-平行,例如使用Dask时间安排和分布式多主基础设施。这里我们争辩说,现代进化计算也可以大大受益于GPU和TPU提供的大规模计算输送量。为了更好地利用这些资源,并能够实现下一代黑盒优化算法,我们发行了Evosax:一个基于JAX的进化战略图书馆,使研究人员能够利用强力功能转换,例如即时编集、自动传动和硬件平行化。Evosax实施了30种进化优化算法,包括基于有限差异的、估计-分配进化战略以及各种遗传算法。每一种单一算法都可以直接用硬件加速器执行,并用单一的编码自动传导或平行地执行。它设计了一个基于JAX的进化战略库,允许研究人员利用模块式格式方式,通过简单要求的进化演算法灵活使用新版本。