The complexity class $\bf{\Sigma^P_2}$ comprises problems based on polynomial-time checkable binary relations $\phi(x,y)$ in which we ask whether there exists $x$ such that for all $y$, $\phi(x,y)$ holds. We let $\bf{U\Sigma^P_2}$ denote the subclass of unambiguous problems in $\bf{\Sigma^P_2}$, namely those whose yes-instances correspond with a unique choice of $x$. $\bf{U\Sigma^P_2}$ is unlikely to have complete problems, but we identify various syntactic subclasses associated with general properties of $\phi$ that guarantee uniqueness. We use these to classify the complexity of problems arising in social choice and game theory, such as existence of (1) a dominating strategy in a game, (2) a Condorcet winner, (3) a strongly popular partition in hedonic games, and (4) a winner (source) in a tournament. We classify these problems, showing the first is $\bf{\Delta^P_2}$-complete, the second and third are complete for a class we term $\bf{PCW}$ (Polynomial Condorcet Winner), and the fourth for a class we term $\bf{PTW}$ (Polynomial Tournament Winner). We define another unambiguous class, $\bf{PMA}$ (Polynomial Majority Argument), seemingly incomparable to $\bf{PTW}$ and $\bf{PCW}$. We show that with randomization, $\bf{PCW}$ and $\bf{PTW}$ coincide with $\bf{\Delta^P_2}$, and $\bf{PMA}$ is contained in $\bf{\Delta^P_2}$. Specifically, we prove: $\bf{\Delta^P_2} \subseteq \bf{PCW} \subseteq \bf{PTW} \subseteq \bf{S^P_2}$, and $\bf{coNP} \subseteq \bf{PMA} \subseteq \bf{S^P_2}$ (and it is known that $\bf{S^P_2}\subseteq \bf{ZPP^{NP}} \subseteq \bf{\Sigma^P_2} \cap \bf{\Pi^P_2}$). We demonstrate that unambiguity can substantially reduce computational complexity by considering ambiguous variants of our problems, and showing they are $\bf{\Sigma^P_2}$-complete. Finally, we study the unambiguous problem of finding a weakly dominant strategy in a game, which seems not to lie in $\bf{\Sigma^P_2}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
27+阅读 · 2024年3月25日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
150+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 10月23日
VIP会员
相关VIP内容
WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
27+阅读 · 2024年3月25日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
150+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员