Object detection in autonomous driving applications implies that the detection and tracking of semantic objects are commonly native to urban driving environments, as pedestrians and vehicles. One of the major challenges in state-of-the-art deep-learning based object detection are false positives which occur with overconfident scores. This is highly undesirable in autonomous driving and other critical robotic-perception domains because of safety concerns. This paper proposes an approach to alleviate the problem of overconfident predictions by introducing a novel probabilistic layer to deep object detection networks in testing. The suggested approach avoids the traditional Sigmoid or Softmax prediction layer which often produces overconfident predictions. It is demonstrated that the proposed technique reduces overconfidence in the false positives without degrading the performance on the true positives. The approach is validated on the 2D-KITTI objection detection through the YOLOV4 and SECOND (Lidar-based detector). The proposed approach enables interpretable probabilistic predictions without the requirement of re-training the network and therefore is very practical.
翻译:道路用户检测的概率方法
在自动驾驶应用中的物体检测意味着对城市驾驶环境中常见的语义对象,如行人和车辆进行检测和跟踪。在目前最先进的基于深度学习的物体检测中,虚警问题是一个主要的挑战,这种情况通常表现为过于自信的分数。在自动驾驶和其他关键机器人感知领域中,这是极其不可取的,因为存在安全隐患。本文提出了一种方法,通过引入新颖的概率层到深度物体检测网络中来缓解过于自信的预测问题。所提出的方法避免了传统的Sigmoid或Softmax预测层,它们往往会产生过度自信的预测。实验证明,所提出的技术通过减少虚警发生时的过度自信程度,在不降低真正阳性的性能的情况下减小了虚警情况。该方法在2D-KITTI物体检测数据集上通过了YOLOV4和SECOND(基于Lidar的检测器)的验证,使得具有可解释性的概率预测成为可能,而不需要重新训练网络,因此具有很高的实用性。