Spatial convolutions are widely used in numerous deep video models. It fundamentally assumes spatio-temporal invariance, i.e., using shared weights for every location in different frames. This work presents Temporally-Adaptive Convolutions (TAdaConv) for video understanding, which shows that adaptive weight calibration along the temporal dimension is an efficient way to facilitate modelling complex temporal dynamics in videos. Specifically, TAdaConv empowers the spatial convolutions with temporal modelling abilities by calibrating the convolution weights for each frame according to its local and global temporal context. Compared to previous temporal modelling operations, TAdaConv is more efficient as it operates over the convolution kernels instead of the features, whose dimension is an order of magnitude smaller than the spatial resolutions. Further, the kernel calibration brings an increased model capacity. We construct TAda2D networks by replacing the 2D convolutions in ResNet with TAdaConv, which leads to at least on par or better performance compared to state-of-the-art approaches on multiple video action recognition and localization benchmarks. We also demonstrate that as a readily plug-in operation with negligible computation overhead, TAdaConv can effectively improve many existing video models with a convincing margin.
翻译:在许多深层视频模型中广泛使用了空间变异。 它基本上假设时空变异, 即使用不同框架中每个位置的共享权重。 这项工作展示了用于视频理解的动态- 适应性变异( Tada Conv), 表明时间维度的适应性权重校准是便利模拟视频中复杂时间动态的有效方法。 具体地说, TAda Conv 通过根据每个框架的本地和全球时间背景校准其时空变异能力, 赋予空间变异以时间建模能力。 与以往的时间建模操作相比, TAda Conv 效率更高, 因为它在变异内核运行, 而不是特征, 其尺寸比空间分辨率小得多。 此外, 内核校准增加了模型能力。 我们建造了TAda2D网络, 将ResNet的2D变异变法替换为TAda Convonv, 这使得每个框架的性能至少与在多个视频动作识别和本地化基准方面采用的最新方法相比更接近或更好。 我们还展示了现有的可塑性磁力模型, 。