This paper considers structures of systems beyond dyadic (pairwise) interactions and investigates mathematical modeling of multi-way interactions and connections as hypergraphs, where captured relationships among system entities are set-valued. To date, in most situations, entities in a hypergraph are considered connected as long as there is at least one common "neighbor". However, minimal commonality sometimes discards the "strength" of connections and interactions among groups. To this end, considering the "width" of a connection, referred to as the $s$-overlap of neighbors, provides more meaningful insights into how closely the communities or entities interact with each other. In addition, $s$-overlap computation is the fundamental kernel to construct the line graph of a hypergraph, a low-order approximation of the hypergraph which can carry significant information about the original hypergraph. Subsequent stages of a data analytics pipeline then can apply highly-tuned graph algorithms on the line graph to reveal important features. Given a hypergraph, computing the $s$-overlaps by exhaustively considering all pairwise entities can be computationally prohibitive. To tackle this challenge, we develop efficient algorithms to compute $s$-overlaps and the corresponding line graph of a hypergraph. We propose several heuristics to avoid execution of redundant work and improve performance of the $s$-overlap computation. Our parallel algorithm, combined with these heuristics, is orders of magnitude (more than $10\times$) faster than the naive algorithm in all cases and the SpGEMM algorithm with filtration in most cases (especially with large $s$ value).


翻译:本文考虑超越dyadi( pairwise) 互动的系统结构, 并调查多路互动和连接的数学模型的数学模型, 即高光谱, 系统实体之间截取的关系被设定为定值。 到目前为止, 高光谱中的实体只要至少有一个共同的“ 邻居”, 就会被视为连接。 然而, 最小的共性有时会丢弃各组之间连接和互动的“ 强度 ” 。 为此, 考虑到连接的“ 强度 ”, 即邻居的超额, 更有意义地揭示社区或实体彼此之间互动的距离。 此外, 美元超额计算是构建高光谱线图的基本内核。 高光谱中, 数据分析管道之后的阶段可以应用高度调的图表算法来显示重要特征。 高超标值计算美元, 以所有正比值的实体之间更密切地计算。 此外, 美元计算成本计算是最高值, 与高超值的计算, 我们的算算算法 。

0
下载
关闭预览

相关内容

专知会员服务
79+阅读 · 2021年5月4日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
VIP会员
相关VIP内容
专知会员服务
79+阅读 · 2021年5月4日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员