We study the MaxCut problem for graphs $G=(V,E)$. The problem is NP-hard, there are two main approximation algorithms with theoretical guarantees: (1) the Goemans \& Williamson algorithm uses semi-definite programming to provide a 0.878MaxCut approximation (which, if the Unique Games Conjecture is true, is the best that can be done in polynomial time) and (2) Trevisan proposed an algorithm using spectral graph theory from which a 0.614MaxCut approximation can be obtained. We discuss a new approach using a specific quadratic program and prove that its solution can be used to obtain at least a 0.502MaxCut approximation. The algorithm seems to perform well in practice.
翻译:我们研究了 $G = (V, E) 图形的 MaxCut 问题。 问题是 NP- 硬, 有两种具有理论保证的主要近似算法:(1) 戈门斯 ⁇ Williamson 算法使用半确定性程序来提供 0. 878 MaxCut 近似( 如果唯一游戏的推测是真实的, 这是在多元时间里可以做的最好的事情 ) 。 (2) 特雷维桑 提议了一种使用光谱图理论的算法, 可以从中获取 0. 614 MaxCut 近似值。 我们讨论的是使用特定二次方程式的新方法, 并证明其解决办法可以至少用于获得 0. 502 MaxCut 近似。 算法在实践上似乎表现良好 。