We present DeepMVI, a deep learning method for missing value imputation in multidimensional time-series datasets. Missing values are commonplace in decision support platforms that aggregate data over long time stretches from disparate sources, and reliable data analytics calls for careful handling of missing data. One strategy is imputing the missing values, and a wide variety of algorithms exist spanning simple interpolation, matrix factorization methods like SVD, statistical models like Kalman filters, and recent deep learning methods. We show that often these provide worse results on aggregate analytics compared to just excluding the missing data. DeepMVI uses a neural network to combine fine-grained and coarse-grained patterns along a time series, and trends from related series across categorical dimensions. After failing with off-the-shelf neural architectures, we design our own network that includes a temporal transformer with a novel convolutional window feature, and kernel regression with learned embeddings. The parameters and their training are designed carefully to generalize across different placements of missing blocks and data characteristics. Experiments across nine real datasets, four different missing scenarios, comparing seven existing methods show that DeepMVI is significantly more accurate, reducing error by more than 50% in more than half the cases, compared to the best existing method. Although slower than simpler matrix factorization methods, we justify the increased time overheads by showing that DeepMVI is the only option that provided overall more accurate analytics than dropping missing values.


翻译:深度MVI是多维时间序列数据集中缺失值估算的深学习方法。 缺失值在决策支持平台中很常见, 决策支持平台长期汇总来自不同来源的数据, 而可靠的数据分析则要求谨慎处理缺失数据。 一种策略是估算缺失值, 并且存在多种多样的算法, 包括简单的内插法、 诸如 SVD 等矩阵因子化方法、 诸如 Kalman 过滤器等统计模型和最近的深层学习方法。 我们显示, 与仅仅排除缺失数据相比, 缺失值往往在总体分析中提供更差的结果。 深MVI 使用神经网络将精细的和粗粗粗的模型与一个时间序列结合起来, 可靠的数据分析要求从一个直截面上对相关序列的趋势进行。 一种策略是估算缺失值缺失值, 而多种算法, 包括一个具有新颖的共振窗口特性的时变器, 以及最近深层内嵌式的内核回归方法。 参数及其培训的精心设计, 是为了将各种缺失区块和数据流的特征进行概括化。 深深层VIVI 相比, 更精确的实验比现有五进式方法比现有五进式方法要显示, 更精确地显示, 最深层方法比现有五进化方法显示, 错误比现有五进式方法比现有错误比现有方法要少得多。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
41+阅读 · 2020年12月18日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
元自步学习
专知会员服务
32+阅读 · 2020年9月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
98+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
37+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
41+阅读 · 2020年12月18日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
元自步学习
专知会员服务
32+阅读 · 2020年9月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
98+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
37+阅读 · 2019年10月9日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员