This paper presents a fractional one-dimensional convolutional neural network (CNN) autoencoder for denoising the Electroencephalogram (EEG) signals which often get contaminated with noise during the recording process, mostly due to muscle artifacts (MA), introduced by the movement of muscles. The existing EEG denoising methods make use of decomposition, thresholding and filtering techniques. In the proposed approach, EEG signals are first transformed to orthogonal domain using Tchebichef moments before feeding to the proposed architecture. A new hyper-parameter ($\alpha$) is introduced which refers to the fractional order with respect to which gradients are calculated during back-propagation. It is observed that by tuning $\alpha$, the quality of the restored signal improves significantly. Motivated by the high usage of portable low energy devices which make use of compressed deep learning architectures, the trainable parameters of the proposed architecture are compressed using randomized singular value decomposition (RSVD) algorithm. The experiments are performed on the standard EEG datasets, namely, Mendeley and Bonn. The study shows that the proposed fractional and compressed architecture performs better than existing state-of-the-art signal denoising methods.


翻译:本文展示了用于在录制过程中经常被噪音污染的电动脑光谱信号的分层单维神经神经网络(CNN)自动编码器(EEG),这些信号在录制过程中往往由于肌肉运动带来的肌肉人工制品(MA)而受噪音污染。现有的EEG解析方法使用了分解、临界线和过滤技术。在拟议方法中,EEEG信号首先使用Tchebichefef 在向拟议架构进料之前的瞬间转换为正方位域。引入了一个新的超常参数($/alpha$),其中提到在回推进过程中计算梯度的分级顺序。观察到,通过调用$/alpha$,恢复信号的质量大大提高了。由于大量使用便携式低能装置,利用压缩的深层学习结构,拟议结构的训练参数是使用随机特异值解剖(RSVD)算法压缩的。实验是在标准 EEG数据设置上进行的,即,即,Mendeartley和BARon的信号模型显示比现有压缩结构的更好进行。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员