Efficient exploration of the chemical space to search the candidate drugs that satisfy various constraints is a fundamental task of drug discovery. Advanced deep generative methods attempt to optimize the molecules in the compact latent space instead of the discrete original space, but the mapping between the original and latent spaces is always kept unchanged during the entire optimization process. The unchanged mapping makes those methods challenging to fast adapt to various optimization scenes and leads to the great demand for assessed molecules (samples) to provide optimization direction, which is a considerable expense for drug discovery. To this end, we design a sample-efficient molecular generative method, HelixMO, which explores the scene-sensitive latent space to promote sample efficiency. The scene-sensitive latent space focuses more on modeling the promising molecules by dynamically adjusting the space mapping by leveraging the correlations between the general and scene-specific characteristics during the optimization process. Extensive experiments demonstrate that HelixMO can achieve competitive performance with only a few assessed samples on four molecular optimization scenes. Ablation studies verify the positive impact of the scene-specific latent space, which is capable of identifying the critical characteristics of the promising molecules. We also deployed HelixMO on the website PaddleHelix (https://paddlehelix.baidu.com/app/drug/drugdesign/forecast) to provide drug design service.
翻译:高效探索化学空间以搜索符合各种限制条件的候选药物是药物发现的一项基本任务。先进的深深基因方法试图优化紧凑潜藏空间中的分子,而不是离散原始空间,但在整个优化过程中,原始空间和潜伏空间之间的测绘始终保持不变。未改变的绘图使这些方法难以快速适应各种优化场景,并导致对评估分子(样本)提供优化方向的巨大需求,这是药物发现的一个相当大的费用。为此,我们设计了一个样本高效分子遗传学方法,即HelixMO,该方法探索对地敏感的潜在空间,以提高样本效率。对地敏感的潜在空间更多地侧重于通过动态调整空间绘图来模拟有希望的分子。在优化过程中,利用一般特性与特定场景特征之间的相互关系,这些方法具有挑战性,并导致对评估分子(样本)提供最佳优化四度的少量评估样本,从而实现竞争性表现。我们进行的研究核实了特定地点潜伏空间的积极影响,能够确定有希望的分子的关键特性。我们还在Haldleximal/dremestimeximix网站上安装了Halbix/dalsignalsignal服务。