In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource, and distribute computation workloads for the slices. To obtain an optimal RAN slicing policy for accommodating the spatial-temporal dynamics of vehicle traffic density, we first formulate a constrained RAN slicing problem with the objective to minimize long-term system cost. This problem cannot be directly solved by traditional reinforcement learning (RL) algorithms due to complicated coupled constraints among decisions. Therefore, we decouple the problem into a resource allocation subproblem and a workload distribution subproblem, and propose a two-layer constrained RL algorithm, named Resource Allocation and Workload diStribution (RAWS) to solve them. Specifically, an outer layer first makes the resource allocation decision via an RL algorithm, and then an inner layer makes the workload distribution decision via an optimization subroutine. Extensive trace-driven simulations show that the RAWS effectively reduces the system cost while satisfying QoS requirements with a high probability, as compared with benchmarks.


翻译:在本文中,我们调查了具有不同服务质量(Qos)要求的车辆互联网(IoV)服务截断问题的无线电接入网络(RAN)切片问题,在这种网络中,在共同的路边网络基础设施上建造了多种逻辑隔离的切片。动态RAN切片框架被展示为动态分配无线电频谱和计算资源,并分配切片的计算工作量。为了获得最佳的RAN切片政策,以容纳车辆交通密度的空间-时空动态,我们首先设计了受限制的RAN切片问题,目的是尽可能降低长期系统成本。由于各种决定之间复杂和相互制约,传统的强化学习(RL)算法无法直接解决这个问题。因此,我们将问题分解为资源分配子问题和工作量分配子问题,并提出一个双层限制的RL算法,名为资源分配和工作负荷分配法(RAWS)来解决这些问题。具体地说,外层首先通过追踪RL算法作出资源分配决定,然后通过内部层使工作量分配决定直接通过传统的强化学习(RL)算法作出,同时通过最精确的RAS模拟要求有效地降低成本分配决定,同时使RASMASMAS的高度模拟能够降低成本。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
将门创投
3+阅读 · 2019年10月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员