To meet the ever increasing mobile traffic demand in 5G era, base stations (BSs) have been densely deployed in radio access networks (RANs) to increase the network coverage and capacity. However, as the high density of BSs is designed to accommodate peak traffic, it would consume an unnecessarily large amount of energy if BSs are on during off-peak time. To save the energy consumption of cellular networks, an effective way is to deactivate some idle base stations that do not serve any traffic demand. In this paper, we develop a traffic-aware dynamic BS sleep control framework, named DeepBSC, which presents a novel data-driven learning approach to determine the BS active/sleep modes while meeting lower energy consumption and satisfactory Quality of Service (QoS) requirements. Specifically, the traffic demands are predicted by the proposed GS-STN model, which leverages the geographical and semantic spatial-temporal correlations of mobile traffic. With accurate mobile traffic forecasting, the BS sleep control problem is cast as a Markov Decision Process that is solved by Actor-Critic reinforcement learning methods. To reduce the variance of cost estimation in the dynamic environment, we propose a benchmark transformation method that provides robust performance indicator for policy update. To expedite the training process, we adopt a Deep Deterministic Policy Gradient (DDPG) approach, together with an explorer network, which can strengthen the exploration further. Extensive experiments with a real-world dataset corroborate that our proposed framework significantly outperforms the existing methods.


翻译:为了满足5G时代不断增加的移动交通需求,基地台(BS)在无线电接入网络中被密集部署,以增加网络覆盖面和能力;然而,由于BS密度高是为了适应高峰交通而设计的,因此,如果BS在非高峰时间使用,就会消耗不必要的大量能源;为了节省蜂窝网络的能源消耗,有效的方式是停止使用一些不满足任何交通需求的闲置基地站。在本文件中,我们开发了一个交通识别的动态BS睡眠控制框架,名为DeepBSC, 提出了一种新的数据驱动学习方法,以确定BS活动/睡眠模式,同时满足较低的能源消耗和令人满意的服务质量要求。具体地说,如果BS-STN模式在非高峰时间使用,则会消耗不必要的大量能源。为了节省蜂窝网络的能源消耗,一种有效的方法是停止使用一些不满足任何交通需求的闲置基地站。根据准确的移动流量预测,BS睡眠控制问题将作为一个Markov 决策程序,由Acor-Cricrecult的强化学习程序进一步解决。为了减少深度的深度试验方法,为了大大降低现有政策变化指标变化,我们提出了一种升级的升级的进度,我们提出了一种标准,从而大大地改进了一种标准,我们用标准来改进了一种标准。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
已删除
将门创投
5+阅读 · 2017年11月20日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
已删除
将门创投
5+阅读 · 2017年11月20日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员