We extend the inflationary fixed-point logic, IFP, with a new kind of second-order quantifiers which have (poly-)logarithmic bounds. We prove that on ordered structures the new logic $\exists^{\log^{\omega}}\text{IFP}$ captures the limited nondeterminism class $\beta\text{P}$. In order to study its expressive power, we also design a new version of Ehrenfeucht-Fra\"iss\'e game for this logic and show that our capturing result will not hold on the general case, i.e. on all the finite structures.
翻译:我们扩展了通胀固定点逻辑( IFP), 采用了一种具有( poly-) logrical 界限的新型第二阶量化符。 我们证明, 在订货结构中, 新的逻辑 $\ exploits\ log ⁇ omega} text{IFP} 能够捕捉有限的非决定性等级 $\ beta\ text{P} $。 为了研究它的表达力, 我们还为这个逻辑设计了新版本的 Ehrenfeucht- Fra\\\'iss\'e 游戏, 并表明我们的捕捉取结果将无法维持在一般情况下, 即所有有限的结构上 。