Hyperparameter optimization is an important subfield of machine learning that focuses on tuning the hyperparameters of a chosen algorithm to achieve peak performance. Recently, there has been a stream of methods that tackle the issue of hyperparameter optimization, however, most of the methods do not exploit the scaling law property of learning curves. In this work, we propose Deep Power Laws (DPL), an ensemble of neural network models conditioned to yield predictions that follow a power-law scaling pattern. Our method dynamically decides which configurations to pause and train incrementally by making use of gray-box evaluations. We compare our method against 7 state-of-the-art competitors on 3 benchmarks related to tabular, image, and NLP datasets covering 57 diverse tasks. Our method achieves the best results across all benchmarks by obtaining the best any-time results compared to all competitors.
翻译:超参数优化是机器学习的一个重要子领域,它侧重于调整所选算法的超参数,以达到峰值性能。最近,出现了一系列处理超参数优化问题的方法,然而,大多数方法并不利用学习曲线的法律属性。在这项工作中,我们提出深电法(DPL),这是一套神经网络模型的组合,其条件是得出符合电法缩放模式的预测。我们的方法动态地决定了通过使用灰箱评估来逐步暂停和培训哪些配置。我们比较了7个最先进的竞争对手的方法,3个基准涉及表格式、图像和NLP数据集,共涉及57项不同任务。我们的方法通过获得与所有竞争者相比的最佳任何时间结果,在所有基准中取得最佳结果。