This paper explores how reliable broadcast can be implemented when facing a dual adversary that can both corrupt processes and remove messages.More precisely, we consider an asynchronous $n$-process message-passing systems in which up to $t_b$ processes are Byzantine and where, at the network level, for each message broadcast by a correct process, an adversary can prevent up to $t_m$ processes from receiving it (the integer $t_m$ defines the power of the message adversary).So, differently from previous works, this work considers that not only computing entities can be faulty (Byzantine processes), but also that the network can lose messages.To this end, the paper first introduces a new basic communication abstraction denoted $k\ell$-cast, and studies its properties in this new bi-dimensional adversary context.Then, the paper deconstructs existing Byzantine-tolerant asynchronous broadcast algorithms and, with the help of the $k\ell$-cast communication abstraction, reconstructs versions of them that tolerate both Byzantine processes and message adversaries.Interestingly, these reconstructed algorithms are also more efficient than the Byzantine-tolerant-only algorithms from which they originate.The paper also shows that the condition $n>3t_b+2t_m$ is necessary and sufficient (with signatures) to design such reliable broadcast algorithms.


翻译:本文探索了在面临既腐败过程又可以删除信息的双重对手时, 如何实施可靠的广播。 确切地说, 我们认为计算机实体不仅会出错( Byzantine 进程),而且网络会丢失信息。 为此, 本文首先引入了一个新的基本通信抽象信息, 标注了$k\ell$- crowd, 并在网络一级研究其属性。 接下来, 纸张解构器可以阻止高达$m$的每条信息通过正确过程接收它( 整数$t_ m美元定义了电文对手的力量 ) 。 所以, 与以往的作品不同, 这项工作认为, 计算机实体不仅会出错( Byzantine 进程), 而且网络也会丢失信息。 本文首先引入了一个新的基本通信抽象信息, 标注了$k\ell$- crowd, 并在新的两维维度对立面的对立面背景环境中的特性。 纸张解构件解析器也是用它们必要的版本, 也用它们比美元- dismatial_ commagistrations

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Scheduling periodic messages on a shared link
Arxiv
0+阅读 · 2022年7月19日
Arxiv
0+阅读 · 2022年7月17日
Arxiv
0+阅读 · 2022年7月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员