In this paper, we study the codebook-based near-field beam training for intelligent reflecting surfaces (IRSs) aided wireless system. In the considered model, the near-field beam training is critical to focus signals at the location of user equipment (UE) to obtain prominent IRS array gain. However, existing codebook schemes cannot achieve low training overhead and high receiving power simultaneously. To tackle this issue, a novel two-layer codebook based beam training scheme is proposed. The layer-1 codebook is designed based on the omnidirectionality of a random-phase beam pattern, which estimates the UE distance with training overhead equivalent to that of one DFT codeword. Then, based on the estimated UE distance, the layer-2 codebook is generated to scan candidate UE locations and obtain the optimal codeword for IRS beamforming. Numerical results show that compared with benchmarks, the proposed two-layer beam training scheme achieves more accurate UE distance and angle estimation, higher data rate, and smaller training overhead.


翻译:在本文中,我们研究了智能反射面(IRS)辅助的无线系统中基于码本的近场波束训练。在所考虑的模型中,近场波束训练对于将信号集中在用户设备(UE)的位置以获得突出的IRS阵列增益至关重要。然而,现有的码本方案不能同时实现低培训开销和高接收功率。为了解决这个问题,提出了一种新的基于两层码本的波束训练方案。第一层码本是基于随机相位波束图的全向性设计的,它用培训开销相当于一个DFT码字来估计UE距离。然后,基于估计的UE距离,生成第二层码本来扫描候选的UE位置并获得用于IRS波束成形的最优码字。数值结果表明,与基准相比,所提出的两层波束训练方案实现了更准确的UE距离和角度估计,更高的数据速率和更小的训练开销。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
专知会员服务
62+阅读 · 2020年3月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
专知会员服务
62+阅读 · 2020年3月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员