Deep learning technology has been widely applied to speech enhancement. While testing the effectiveness of various network structures, researchers are also exploring the improvement of the loss function used in network training. Although the existing methods have considered the auditory characteristics of speech or the reasonable expression of signal-to-noise ratio, the correlation with the auditory evaluation score and the applicability of the calculation for gradient optimization still need to be improved. In this paper, a signal-to-noise ratio loss function based on auditory power compression is proposed. The experimental results show that the overall correlation between the proposed function and the indexes of objective speech intelligibility, which is better than other loss functions. For the same speech enhancement model, the training effect of this method is also better than other comparison methods.
翻译:在测试各种网络结构的有效性的同时,研究人员也在探索如何改进网络培训中使用的损失功能。虽然现有方法考虑了语言的听觉特点或信号对噪音比率的合理表达,但与听觉评价评分的相关性和梯度优化计算的适用性仍有待改进。在本文中,提出了基于听力压缩的信号对噪音比率损失功能。实验结果显示,拟议功能与客观语言智能指数之间的总体相关性比其他损失功能要好。对于相同的演讲增强模型而言,这一方法的培训效果也比其他比较方法要好。