Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing users and items into latent representation space, with their correlative patterns from interaction data. Among various CF techniques, the development of GNN-based recommender systems, e.g., PinSage and LightGCN, has offered the state-of-the-art performance. However, two key challenges have not been well explored in existing solutions: i) The over-smoothing effect with deeper graph-based CF architecture, may cause the indistinguishable user representations and degradation of recommendation results. ii) The supervision signals (i.e., user-item interactions) are usually scarce and skewed distributed in reality, which limits the representation power of CF paradigms. To tackle these challenges, we propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF) to jointly capture local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture. In particular, the designed hypergraph structure learning enhances the discrimination ability of GNN-based CF paradigm, so as to comprehensively capture the complex high-order dependencies among users. Additionally, our HCCF model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems, based on the hypergraph-enhanced self-discrimination. Extensive experiments on three benchmark datasets demonstrate the superiority of our model over various state-of-the-art recommendation methods, and the robustness against sparse user interaction data. Our model implementation codes are available at https://github.com/akaxlh/HCCF.


翻译:协作过滤(CF)是将用户和项目纳入潜在代表空间的参数化的基本范例,其相关模式来自互动数据; 在各种CF技术中,开发基于GNN的推荐系统,例如PinSage和LightGCN, 提供了最先进的绩效;然而,现有解决方案中尚未充分探讨两项关键挑战:(一) 以更深的图形为基础的CF结构造成的过度吸附效应,可能导致无法区分的用户的稳健表现和建议结果的退化。 (二) 监督信号(即用户项目互动)通常稀缺,在现实中分布偏斜,限制了基于GNNNE的推荐系统的代表性。 为了应对这些挑战,我们提出了一个新的自我监督的建议框架,即超光速对比协作过滤(HCC),以联合捕捉与高压模型强化的交叉对比学习结构的本地和全球合作关系。 设计高光学结构加强了基于GNNCF的模型化用户互动能力, 从而将我们现有系统内部数据质量代表系统与基于高清晰的高级数据系统整合。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
58+阅读 · 2021年4月29日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2021年5月3日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
11+阅读 · 2021年2月19日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
19+阅读 · 2019年11月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员