We present regression and compression algorithms for lattice QCD data utilizing the efficient binary optimization ability of quantum annealers. In the regression algorithm, we encode the correlation between the input and output variables into a sparse coding machine learning algorithm. The trained correlation pattern is used to predict lattice QCD observables of unseen lattice configurations from other observables measured on the lattice. In the compression algorithm, we define a mapping from lattice QCD data of floating-point numbers to the binary coefficients that closely reconstruct the input data from a set of basis vectors. Since the reconstruction is not exact, the mapping defines a lossy compression, but, a reasonably small number of binary coefficients are able to reconstruct the input vector of lattice QCD data with the reconstruction error much smaller than the statistical fluctuation. In both applications, we use D-Wave quantum annealers to solve the NP-hard binary optimization problems of the machine learning algorithms.
翻译:我们使用量子anners 的高效二进制优化能力为 lattice QCD 数据提出回归和压缩算法。 在回归算法中, 我们将输入和输出变量的关联编码成一个稀疏的编码机学习算法。 训练有素的关联模式用来预测从在 lattice 上测量的其他可观测到的不可见的 lattico 配置的 QCD 。 在压缩算法中, 我们定义了从 lattice 的 QCD 数据中绘制浮点数到从一组基础矢量中密切重建输入数据的二进制系数的图。 由于重建不准确, 绘图定义了损失压缩, 但是, 数量相当少的二进制系数能够重建 lattice QCD 数据的输入矢量, 重建错误比统计波动要小得多。 在这两个应用程序中, 我们用 D- Wave 量纳利器来解决机器学习算法的 NP- 硬的二进制优化问题。