We revisit the notion of initial sets by Xu and Cayrol, i.e., non-empty minimal admissible sets in abstract argumentation frameworks. Initial sets are a simple concept for analysing conflicts in an abstract argumentation framework and to explain why certain arguments can be accepted. We contribute with new insights on the structure of initial sets and devise a simple non-deterministic construction principle for any admissible set, based on iterative selection of initial sets of the original framework and its induced reducts. In particular, we characterise many existing admissibility-based semantics via this construction principle, thus providing a constructive explanation on the structure of extensions. We also investigate certain problems related to initial sets with respect to their computational complexity.
翻译:我们重新审视Xu和Cayrol提出的初始组群概念,即在抽象的论证框架中,非空白的最低限度可受理组群概念;初始组群是一个简单的概念,用于在抽象的论证框架内分析冲突,并解释某些论点为何可以被接受;我们以对初始组群结构的新见解作出贡献,并根据迭接地选择原始框架的初始组群及其诱发的回流,为任何可受理组群设计一个简单、非决定性的结构原则;特别是,我们通过这一构建原则将许多现有的基于可受理的语义描述成一个特征,从而对延期结构作出建设性解释;我们还调查与初始组群群有关的某些与计算复杂性有关的问题。