In a large-scale medical examination, the UK Biobank study has successfully imaged more than 32,000 volunteer participants with magnetic resonance imaging (MRI). Each scan is linked to extensive metadata, providing a comprehensive medical survey of imaged anatomy and related health states. Despite its potential for research, this vast amount of data presents a challenge to established methods of evaluation, which often rely on manual input. To date, the range of reference values for cardiovascular and metabolic risk factors is therefore incomplete. In this work, neural networks were trained for image-based regression to infer various biological metrics from the neck-to-knee body MRI automatically. The approach requires no manual intervention or direct access to reference segmentations for training. The examined fields span 64 variables derived from anthropometric measurements, dual-energy X-ray absorptiometry (DXA), atlas-based segmentations, and dedicated liver scans. With the ResNet50, the standardized framework achieves a close fit to the target values (median R^2 > 0.97) in cross-validation. Interpretation of aggregated saliency maps suggests that the network correctly targets specific body regions and limbs, and learned to emulate different modalities. On several body composition metrics, the quality of the predictions is within the range of variability observed between established gold standard techniques.
翻译:在一次大规模的医学检查中,英国生物银行研究成功地将32 000多名自愿参与者的磁共振成像(MRI)成像了32 000多名具有磁共振成像(MRI)的自愿参与者。每份扫描都与广泛的元数据挂钩,对成像解剖和相关健康状况进行全面医学调查。尽管有研究潜力,但大量数据对既定的评估方法构成挑战,而这些方法往往依靠人工输入。因此,迄今为止,心血管和代谢风险因素的参考值范围不完全。在这项工作中,神经网络接受了基于图像的回归培训,以自动从颈部到膝部的MRI体中推导出各种生物指标。这种方法不需要人工干预,也不需要直接获得用于培训的参考分层。所审查的字段覆盖了64个变量,这些变量来自人体测量、双能X射线吸收法、基于图集的分解和专门的肝脏扫描。在ResNet50中,标准化框架在交叉校准中实现了接近目标值(即R2 > 0.97)。该方法不需要人工干预,也不需要直接获得用于培训的参考的参考分部分。所研究。所研究的域图显示,从人类测量测量测量测量、已观察到的不同结构结构结构结构图是各种的精确测测测测测测测测测测测测测测测测测测测测测测测测的图。