We present a straightforward and efficient way to control unstable robotic systems using an estimated dynamics model. Specifically, we show how to exploit the differentiability of Gaussian Processes to create a state-dependent linearized approximation of the true continuous dynamics that can be integrated with model predictive control. Our approach is compatible with most Gaussian process approaches for system identification, and can learn an accurate model using modest amounts of training data. We validate our approach by learning the dynamics of an unstable system such as a segway with a 7-D state space and 2-D input space (using only one minute of data), and we show that the resulting controller is robust to unmodelled dynamics and disturbances, while state-of-the-art control methods based on nominal models can fail under small perturbations. Code is open sourced at https://github.com/learning-and-control/core .
翻译:具体地说,我们展示了如何利用高斯进程的不同性来创建一种以国家为依存的直线近似线性的真正连续动态,可以与模型预测控制相结合。我们的方法与大多数高斯进程系统识别方法相容,并且可以使用少量的培训数据来学习一个准确的模型。我们通过学习一个不稳定系统的动态来验证我们的方法,例如一个7-D状态空间和2-D输入空间(只使用一分钟的数据)的螺丝,我们证明由此产生的控制器对未建模的动态和扰动非常强大,而以名义模型为基础的最先进的控制方法可以在小的扰动下失败。代码可以在 https://github./comlearning-and-control/core 中公开来源于 https://github./comleiness-and-control/core。