Painting is one of the ways for people to express their ideas, but what if people with disabilities in hands want to paint? To tackle this challenge, we create an end-to-end solution that can generate artistic images from text descriptions. However, due to the lack of datasets with paired text description and artistic images, it is hard to directly train an algorithm which can create art based on text input. To address this issue, we split our task into three steps: (1) Generate a realistic image from a text description by using Dynamic Memory Generative Adversarial Network (arXiv:1904.01310), (2) Classify the image as a genre that exists in the WikiArt dataset using Resnet (arXiv: 1512.03385), (3) Select a style that is compatible with the genre and transfer it to the generated image by using neural artistic stylization network (arXiv:1705.06830).
翻译:绘画是人们表达自己想法的方式之一, 但如果残疾人在手里想画画, 如何呢? 为了应对这一挑战, 我们创建了一个端到端的解决方案, 可以从文字描述中生成艺术图像。 但是, 由于缺乏配对文本描述和艺术图像的数据集, 很难直接培训一种算法, 可以基于文字输入创建艺术。 为了解决这个问题, 我们的任务分为三个步骤:(1) 通过使用动态记忆生成反逆网络( arXiv: 1904. 1310) 从文本描述中生成一个现实的图像; (2) 将图像归类为使用 Resnet (arXiv: 1512.03385) 的维基阿特数据集中存在的一种基因( arXiv: 1705.06830) 的图像分类。 (3) 选择一种与该基因兼容的风格, 并通过使用神经艺术文质化网络将其传输到生成的图像(arXiv: 1705.06830) 。