A periodic lattice in Euclidean space is the infinite set of all integer linear combinations of basis vectors. Any lattice can be generated by infinitely many different bases. Motivated by rigid crystal structures, we consider lattices up to rigid motion or isometry, which preserves inter-point distances. Then all isometry classes of lattices form a continuous space. There are several parameterisations of this space in dimensions two and three, but this is the first which is not discontinuous in singular cases. We introduce new continuous coordinates (root products) on the space of lattices and new metrics between root forms satisfying all metric axioms and continuity under all perturbations. The root forms allow visualisations of hundreds of thousands of real crystal lattices from the Cambridge Structural Database for the first time.


翻译:欧clidean 空间的周期线条是基础矢量所有整数线性组合的无限组合。 任何线条都可以由无限多的基数生成。 受硬晶体结构的驱动, 我们考虑以硬体运动或等离子测量为动力, 保持点间距离。 然后所有等离类的拉特克形成一个连续的空间。 在二维和三维的维度中, 此空间有多个参数, 但这是第一个在奇数中并不不中断的参数 。 我们引入了新连续坐标( 根值产品), 用于固定空间, 以及各种根表之间的新测量度, 满足所有矩阵的轴值和连续性。 根表允许首次从剑桥结构数据库中直观地看到数以十万计的真正的晶体拉特。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
76+阅读 · 2021年3月16日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员