Shamir and Spencer proved in the 1980s that the chromatic number of the binomial random graph G(n,p) is concentrated in an interval of length at most \omega\sqrt{n}, and in the 1990s Alon showed that an interval of length \omega\sqrt{n}/\log n suffices for constant edge-probabilities p \in (0,1). We prove a similar logarithmic improvement of the Shamir-Spencer concentration results for the sparse case p=p(n) \to 0, and uncover a surprising concentration `jump' of the chromatic number in the very dense case p=p(n) \to 1.
翻译:暂无翻译