The point of this work is to explore axiomatisations of concurrent computation using the technology of proof theory and realizability. To deal with this problem, we redefine the Concurrent Realizability of Beffara using as realizers a $\pi$-calculus with global fusions. We define a variant of the Conjunctive Structures of \'E Miquey as a general structure where belong realizers and truth values from realizability. As for Secuential Realizability, we encode the realizers into the algebraic structure by means of a combinatory presentation, following the work of Honda & Yoshida. In this first work we restricted to work with the $\pi$-calculus without replication and its corresponding type system is the multiplicative linear logic (MLL).
翻译:这项工作的要点是探索使用证据理论和可变性技术同时计算的方法的共性。 为了解决这一问题,我们重新定义Beffara同时实现的可能性, 使用美元/pi$-计算器作为实现者, 使用全球融合的计算器。 我们定义了“E Miquey”组合结构的变式, 将“ equiy” 组合结构作为“ 归属实现者” 和“ 真实性” 中真实值的一般结构。 至于“ 真实性”, 在Honda & Yoshida 的工作之后, 我们通过组合式演示将“ 实现者” 编码成“ ” 代数结构。 在这项工作中,我们仅限于与“ $/pi$- calulus” 一起工作, 不复制, 其相应的类型系统是多复制的线性逻辑( MLLL)。