The present paper concerns filtered de la Vall\'ee Poussin (VP) interpolation at the Chebyshev nodes of the four kinds. This approximation model is interesting for applications because it combines the advantages of the classical Lagrange polynomial approximation (interpolation and polynomial preserving) with the ones of filtered approximation (uniform boundedness of the Lebesgue constants and reduction of the Gibbs phenomenon). Here we focus on some additional features that are useful in the applications of filtered VP interpolation. In particular, we analyze the simultaneous approximation provided by the derivatives of the VP interpolation polynomials. Moreover, we state the uniform boundedness of VP approximation operators in some Sobolev and H\"older--Zygmund spaces where several integro--differential models are uniquely and stably solvable.
翻译:本文件涉及Chebyshev四类节点的过滤干涉(VP) 。 这个近似模型对于应用来说很有意思, 因为它将古典Lagrange 多边近似( 内插和多元保护) 的优点与过滤近似( Lebesgue 常数的统一结合和Gibbs 现象的减少) 的优点结合起来。 在这里, 我们集中关注一些在过滤的 VP 干涉应用中有用的其他特性。 特别是, 我们分析了 VP 间插多数值的衍生物提供的同步近似。 此外, 我们指出一些Sobolev 和 H\"older- Zygmund 空间的VP近似操作员的统一界限, 在那里, 几个 Integro- differ 模型是独特和可刺性可溶的。