The burning number $b(G)$ of a graph $G$ is the smallest number of turns required to burn all vertices of a graph if at every turn a new fire is started and existing fires spread to all adjacent vertices. The Burning Number Conjecture of Bonato et al. (2016) postulates that $b(G)\leq \left\lceil\sqrt{n}\right\rceil$ for all graphs $G$ on $n$ vertices. We prove that this conjecture holds asymptotically, that is $b(G)\leq (1+o(1))\sqrt n$.
翻译:图形$G$的燃烧数 $b(G) $G$是燃烧图中所有顶点所需的最小的转折数,如果每次转弯都发生新火灾,而现有火灾蔓延到所有相邻的顶点。 Bonato 等人的燃烧数预测 。Bonato et al.\\\\\\\\\\ perq\ left\ lceil\ sqrt{n\\ right\ rcele$ $, 对于所有图中以 $G$为单位的垂直点。我们证明,这种推测是无法想象的,即$b(G)\leq (1+o(1))\ sqrt n$ 。