We give a simple proof of the matrix Spencer conjecture up to poly-logarithmic rank: given symmetric $d \times d$ matrices $A_1,\ldots,A_n$ each with $\|A_i\|_{\mathsf{op}} \leq 1$ and rank at most $n/\log^3 n$, one can efficiently find $\pm 1$ signs $x_1,\ldots,x_n$ such that their signed sum has spectral norm $\|\sum_{i=1}^n x_i A_i\|_{\mathsf{op}} = O(\sqrt{n})$. This result also implies a $\log n - \Omega( \log \log n)$ qubit lower bound for quantum random access codes encoding $n$ classical bits with advantage $\gg 1/\sqrt{n}$. Our proof uses the recent refinement of the non-commutative Khintchine inequality in [Bandeira, Boedihardjo, van Handel, 2022] for random matrices with correlated Gaussian entries.


翻译:我们用一个简单的证据证明了Spencer Transpence Spencer 的矩阵假设, 直至多对数等级: 给对称 $d\ times d times d$ mexm $ A_ 1,\ ldots, A_ $_ 1,\ ldots, A_ $_ mathsf{ = O( sqrt{n} $_ $ $ $_ i, A_ i_ sumathsf}, A_ n$ $ 每人 $_ a_ a_ i_ mathsf= $_ 1, A_ masqrt= O (\\ qrt{} $_ $_ $_ a_ i_ mathsf{ = $_ a_ a_ a_ a_ log n\ mats\ mas\ log\ log\ log\ log} 1 leqn $, 并且 subt coun coun coun coun commes commes $ gir $ gir $\\\\\gg list 1/ 1/ 1/s 1/s 1/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员