This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions. To this end, we first reformulate the original problem into a minimax problem corresponding to a feasible augmented Lagrangian, which can be solved by the augmented Lagrangian method in an infinite dimensional setting. Based on this, by expressing the primal and dual variables with two individual deep neural network functions, we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimization method together with a projection technique. Compared to the traditional penalty method, the new method admits two main advantages: i) the choice of the penalty parameter is flexible and robust, and ii) the numerical solution is more accurate in the same magnitude of computational cost. As typical applications, we apply the new approach to solve elliptic problems and (nonlinear) eigenvalue problems with essential boundary conditions, and numerical experiments are presented to show the effectiveness of the new method.


翻译:本文关注的是针对基本边界条件的变异问题的新颖的深层次学习方法。 为此,我们首先将原始问题改写成一个小问题,与可行的扩大拉格朗加法相对应,在无限的维度环境中,可以通过增强拉格朗加法来解决。 在此基础上,我们通过表达具有两个单项深神经网络功能的原始变量和双重变量,展示了拉格朗加法的强化深层次学习方法,参数由随机优化法和投影技术加以培训。 与传统的惩罚方法相比,新方法承认了两个主要优势:(一) 刑罚参数的选择灵活有力,以及(二) 数字解决方案在计算成本的相同程度上更为准确。作为典型应用,我们采用了新办法解决椭圆性问题和(非线性)基本边界条件的精度问题,并进行了数字实验,以显示新方法的有效性。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning for Constrained Utility Maximisation
Arxiv
0+阅读 · 2021年8月27日
Arxiv
9+阅读 · 2021年3月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
5+阅读 · 2018年6月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员