It is widely believed that engineering a model to be invariant/equivariant improves generalisation. Despite the growing popularity of this approach, a precise characterisation of the generalisation benefit is lacking. By considering the simplest case of linear models, this paper provides the first provably non-zero improvement in generalisation for invariant/equivariant models when the target distribution is invariant/equivariant with respect to a compact group. Moreover, our work reveals an interesting relationship between generalisation, the number of training examples and properties of the group action. Our results rest on an observation of the structure of function spaces under averaging operators which, along with its consequences for feature averaging, may be of independent interest.
翻译:人们普遍认为,工程模型是变式/变式的,可以改进一般化,尽管这一方法越来越受欢迎,但普遍化的好处缺乏精确的特性。通过考虑线性模型的最简单的例子,本文件为变式/变式模型的概括性提供了在目标分布对一个集束体来说是无变式/变式的情况下,在一般化/变式模型方面,可以肯定的第一次非零改进。此外,我们的工作揭示了一般化、培训实例的数量和集体行动的性质之间的令人感兴趣的关系。我们的成果在于对平均操作者之下的功能空间结构进行观察,这种观察除了对平均特征的影响外,还可能具有独立的兴趣。