We study the phase reconstruction of signals $f$ belonging to complex Gaussian shift-invariant spaces $V^\infty(\varphi)$ from spectrogram measurements $|\mathcal{G}f(X)|$ where $\mathcal{G}$ is the Gabor transform and $X \subseteq \mathbb{R}^2$. An explicit reconstruction formula will demonstrate that such signals can be recovered from measurements located on parallel lines in the time-frequency plane by means of a Riesz basis expansion. Moreover, connectedness assumptions on $|f|$ result in stability estimates in the situation where one aims to reconstruct $f$ on compact intervals. Driven by a recent observation that signals in Gaussian shift-invariant spaces are determined by lattice measurements [Grohs, P., Liehr, L., Injectivity of Gabor phase retrieval from lattice measurements, arXiv:2008.07238] we prove a sampling result on the stable approximation from finitely many spectrogram samples. The resulting algorithm provides a non-iterative, provably stable and convergent approximation technique. In addition, it constitutes a method of approximating signals in function spaces beyond $V^\infty(\varphi)$, such as Paley-Wiener spaces.


翻译:我们研究的是来自光谱测量的属于复合高山变换空间的信号的分阶段重建(美元) 美元(瓦夫蒂) 美元(瓦夫蒂) 美元(瓦夫蒂) 美元(瓦夫菲) 美元(瓦夫菲) 美元(瓦夫菲) 美元(瓦夫菲) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(瓦什卡) 美元(美元) 的信号是加博的变换和 美元(Gabor) 美元 (Gabor, P., Liehr, L.) 。 明确的重建公式将表明,通过扩大Rieszyzy 基础,从位于时频平面平线上的测量线上的测量中可以恢复这些信号。 此外,对美元(美元) 的连接假设导致一个稳定的估算结果, 由此得出的算算法提供了一种不固定的、 稳定和稳定的方法。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
误差反向传播——MLP
统计学习与视觉计算组
5+阅读 · 2018年6月8日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月25日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
误差反向传播——MLP
统计学习与视觉计算组
5+阅读 · 2018年6月8日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员