Background. The COVID-19 pandemic triggered a widespread transition to hybrid work models (combinations of co-located and remote work) as software professionals' demanded more flexibility and improved work-life balance. However, hybrid work models reduce the spontaneous, informal face-to-face interactions that promote group maturation, cohesion, and resilience. Little is known about how software companies can successfully transition to a hybrid workforce or the factors that influence the resilience of hybrid software development teams. Goal. The purpose of this study is to explore the relationship between hybrid work and team resilience in the context of software development. Method. Constructivist Grounded Theory was used, based on interviews of 26 software professionals. This sample included professionals of different genders, ethnicities, sexual orientations, and levels of experience. Interviewees came from eight different companies, 22 different projects, and four different countries. Consistent with grounded theory methodology, data collection, and analysis were conducted iteratively, in waves, using theoretical sampling, constant comparison, and initial, focused, and theoretical coding. Results. Software Team Resilience is the ability of a group of software professionals to continue working together effectively under adverse conditions. Resilience depends on the group's maturity. The configuration of a hybrid team (who works where and when) can promote or hinder group maturity depending on the level of intra-group interaction it supports. Conclusion. This paper presents the first study on the resilience of hybrid software teams. Software teams need resilience to maintain their performance in the face of disruptions and crises. Software professionals strongly value hybrid work; therefore, team resilience is a key factor to be considered in the software industry.


翻译:背景:COVID-19大流行引发了向混合工作模式的广泛过渡(合用和远程工作的组合),因为软件专业人员要求更具灵活性和改进工作-生活平衡;然而,混合工作模式减少了促进群体成熟、凝聚力和复原力的自发、非正式面对面互动;对软件公司如何成功过渡到混合劳动力或影响混合软件开发团队复原力的因素所知甚少;目标:本研究的目的是探讨混合工作与团队在软件开发过程中的复原力之间的关系;方法:根据对26名软件专业人员的访谈,使用了建构地理论;这种样本包括不同性别、族裔、性取向和经验水平的专业人员;受访者来自8个不同的公司、22个不同的项目和4个不同国家;根据理论方法,在波浪中,利用理论抽样、不断比较、初始、重点和理论编码,对混合工作团队的复原力进行了互动;软件团队是一组软件专业人员在不利条件下继续有效合作的能力;复原力取决于团队的成熟度,因此,在组织内部工作周期中,取决于团队的稳定性,从而支持团队的稳定性。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月2日
Arxiv
11+阅读 · 2021年3月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员