Direct methods have shown excellent performance in the applications of visual odometry and SLAM. In this work we propose to leverage their effectiveness for the task of 3D multi-object tracking. To this end, we propose DirectTracker, a framework that effectively combines direct image alignment for the short-term tracking and sliding-window photometric bundle adjustment for 3D object detection. Object proposals are estimated based on the sparse sliding-window pointcloud and further refined using an optimization-based cost function that carefully combines 3D and 2D cues to ensure consistency in image and world space. We propose to evaluate 3D tracking using the recently introduced higher-order tracking accuracy (HOTA) metric and the generalized intersection over union similarity measure to mitigate the limitations of the conventional use of intersection over union for the evaluation of vision-based trackers. We perform evaluation on the KITTI Tracking benchmark for the Car class and show competitive performance in tracking objects both in 2D and 3D.
翻译:直接方法显示在视觉视距测量和SLAM的应用方面表现优异。在这项工作中,我们提议利用3D多点跟踪任务的有效性。为此,我们提议直接跟踪器,这是一个框架,有效地将短期跟踪的直接图像调整与3D物体探测的滑动窗口光度计捆绑调整相结合。根据稀疏的滑动窗口点估计物体提案,并使用基于优化的成本功能进一步完善,该功能谨慎地结合了3D和2D信号,以确保图像和世界空间的一致性。我们提议使用最近采用的更高顺序跟踪精确度(HOTA)指标和工会类似措施的通用交叉度来评估3D跟踪,以减轻传统使用交叉式连接来评价基于愿景的跟踪器的局限性。我们评估了KITTI对汽车级的跟踪基准,并显示在2D和3D跟踪对象方面的竞争性业绩。