Stochastic learning to rank (LTR) is a recent branch in the LTR field that concerns the optimization of probabilistic ranking models. Their probabilistic behavior enables certain ranking qualities that are impossible with deterministic models. For example, they can increase the diversity of displayed documents, increase fairness of exposure over documents, and better balance exploitation and exploration through randomization. A core difficulty in LTR is gradient estimation, for this reason, existing stochastic LTR methods have been limited to differentiable ranking models (e.g., neural networks). This is in stark contrast with the general field of LTR where Gradient Boosted Decision Trees (GBDTs) have long been considered the state-of-the-art. In this work, we address this gap by introducing the first stochastic LTR method for GBDTs. Our main contribution is a novel estimator for the second-order derivatives, i.e., the Hessian matrix, which is a requirement for effective GBDTs. To efficiently compute both the first and second-order derivatives simultaneously, we incorporate our estimator into the existing PL-Rank framework, which was originally designed for first-order derivatives only. Our experimental results indicate that stochastic LTR without the Hessian has extremely poor performance, whilst the performance is competitive with the current state-of-the-art with our estimated Hessian. Thus, through the contribution of our novel Hessian estimation method, we have successfully introduced GBDTs to stochastic LTR.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员