We study coalition structure formation with intra and inter-coalition externalities in the introduced family of nested non-cooperative simultaneous finite games. A non-cooperative game embeds a coalition structure formation mechanism, and has two outcomes: an allocation of players over coalitions and a payoff for every player. Coalition structures of a game are described by Young diagrams. They serve to enumerate coalition structures and allocations of players over them. For every coalition structure a player has a set of finite strategies. A player chooses a coalition structure and a strategy. A (social) mechanism eliminates conflicts in individual choices and produces final coalition structures. Every final coalition structure is a non-cooperative game. Mixed equilibrium always exists and consists of a mixed strategy profile, payoffs and equilibrium coalition structures. We use a maximum coalition size to parametrize the family of the games. The non-cooperative game of Nash is a partial case of the model. The result is different from the Shapley value, a strong Nash, coalition-proof equilibria, core solutions, and other equilibrium concepts. We supply few non-cooperative coalition structure stability criteria.
翻译:我们研究在引入的、不合作的、同时有限制的游戏中,以联盟内部和联盟间外部效应组成的联盟结构。一个不合作的游戏嵌入了一个联盟结构形成机制,并有两个结果:将玩家分配为联盟,给每个玩家一个报酬。一个游戏的联合结构由Young图表描述,用来罗列联盟结构,给玩家分配。对于每一个联盟结构来说,一个玩家都有一套有限的战略。一个玩家选择了一个联盟结构和战略。一个(社会)机制消除了个人选择中的冲突,产生了最终的联盟结构。每个最后的联盟结构都是一种不合作的游戏。每一个最后的联盟结构都是一种不合作的游戏。混合平衡始终存在,由混合的战略结构、补偿和平衡联盟结构组成。我们使用一个最大的联盟规模来平衡游戏的家族。纳什不合作的游戏是模型的一部分。结果不同于沙培价值、强的纳什、不结盟的平衡、核心解决方案和其他平衡概念。我们提供很少非合作的联盟结构稳定标准。