Lloyd S. Shapley \cite{Shapley1953a, Shapley1953} introduced a set of axioms in 1953, now called the {\em Shapley axioms}, and showed that the axioms characterize a natural allocation among the players who are in grand coalition of a {\em cooperative game}. Recently, \citet{StTe2019} showed that a cooperative game can be decomposed into a sum of {\em component games}, one for each player, whose value at the grand coalition coincides with the {\em Shapley value}. The component games are defined by the solutions to the naturally defined system of least squares linear equations via the framework of the {\em Hodge decomposition} on the hypercube graph. In this paper we propose a new set of axioms which characterizes the component games. Furthermore, we realize them through an intriguing stochastic path integral driven by a canonical Markov chain. The integrals are natural representation for the expected total contribution made by the players for each coalition, and hence can be viewed as their fair share. This allows us to interpret the component game values for each coalition also as a valid measure of fair allocation among the players in the coalition. Our axioms may be viewed as a completion of Shapley axioms in view of this characterization of the Hodge-theoretic component games, and moreover, the stochastic path integral representation of the component games may be viewed as an extension of the {\em Shapley formula}.


翻译:Lloyd S. Shapley\ cite{Shapley1953a, Shapley1953} 于1953年引入了一套正数游戏, 现在称为 ~ Shapley axiom}, 并显示正数在超立方形图中代表了参加大联盟的玩家之间的自然分配。 最近, Shapley S. Shapley\ cite{Shapley1953a} 显示, 合作游戏可以分解成一个组合游戏的总和 。 每个玩家在大型联盟中的价值与 Exem Shaply 值相吻合 。 组合的组合由自然代表着预想的总和 。 通过 ~ em Hodge decomplace 框架的自然定义的最小平方线方方方方方平方方方方方方方方方方方方方方方方方方方方方方方形系统解决方案定义了游戏。 在本文中, 我们的正方方方方方方方方方方方方形游戏中也可以理解游戏的每个组合的组合, 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
19+阅读 · 2021年7月11日
专知会员服务
42+阅读 · 2021年4月2日
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
85+阅读 · 2020年12月5日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月24日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2021年7月11日
专知会员服务
42+阅读 · 2021年4月2日
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
85+阅读 · 2020年12月5日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员