We provide a new flexible framework for inference with the instrumental variable model. Rather than using linear specifications, functions characterizing the effects of instruments and other explanatory variables are estimated using machine learning via Bayesian Additive Regression Trees (BART). Error terms and their distribution are inferred using Dirichlet Process mixtures. Simulated and real examples show that when the true functions are linear, little is lost. But when nonlinearities are present, dramatic improvements are obtained with virtually no manual tuning.
翻译:我们为与工具变量模型进行推论提供了一个新的灵活框架。 我们不是使用线性规格,而是通过Bayesian Additive Recrestition 树(BART)的机器学习来估计仪器和其他解释变量的效果。 错误条件及其分布是用dirichlet 进程混合物来推断的。 模拟和真实的例子显示,当真实功能为线性时,几乎没有丢失。 但是,如果存在非线性,则在几乎没有手动调试的情况下取得了显著的改进。