We revisit the setting of fairly allocating indivisible items when agents have different weights representing their entitlements. First, we propose a parameterized family of relaxations for weighted envy-freeness and the same for weighted proportionality; the parameters indicate whether smaller-weight or larger-weight agents should be given a higher priority. We show that each notion in these families can always be satisfied, but any two cannot necessarily be fulfilled simultaneously. We then introduce an intuitive weighted generalization of maximin share fairness and establish the optimal approximation of it that can be guaranteed. Furthermore, we characterize the implication relations between the various weighted fairness notions introduced in this and prior work, and relate them to the lower and upper quota axioms from apportionment.


翻译:我们重新审视了在代理人具有代表其应享待遇的不同权重时公平分配不可分割物品的设置。 首先,我们提出一个按加权忌妒自由度和加权相称性进行松绑的参数式组合;参数表明是否应该给予较轻或较重的代理人更高的优先地位。我们表明这些家庭中的每个概念总是可以满足的,但任何两个概念都不一定同时实现。然后,我们引入一个直观的、加权的、关于最大份额公平性的概括,并确立可以保证的最佳近似点。 此外,我们界定了在这项工作中引入的各种加权公平概念与先前工作中的各种加权公平概念之间的所涉关系,并将它们与从分配中下至上分配的配额轴联系起来。

1
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员