Deep learning experiments in Cohen et al. (2021) using deterministic Gradient Descent (GD) revealed an {\em Edge of Stability (EoS)} phase when learning rate (LR) and sharpness (\emph{i.e.}, the largest eigenvalue of Hessian) no longer behave as in traditional optimization. Sharpness stabilizes around $2/$LR and loss goes up and down across iterations, yet still with an overall downward trend. The current paper mathematically analyzes a new mechanism of implicit regularization in the EoS phase, whereby GD updates due to non-smooth loss landscape turn out to evolve along some deterministic flow on the manifold of minimum loss. This is in contrast to many previous results about implicit bias either relying on infinitesimal updates or noise in gradient. Formally, for any smooth function $L$ with certain regularity condition, this effect is demonstrated for (1) {\em Normalized GD}, i.e., GD with a varying LR $ \eta_t =\frac{ \eta }{ || \nabla L(x(t)) || } $ and loss $L$; (2) GD with constant LR and loss $\sqrt{L}$. Both provably enter the Edge of Stability, with the associated flow on the manifold minimizing $\lambda_{\max}(\nabla^2 L)$. The above theoretical results have been corroborated by an experimental study.
翻译:科恩等人 (2021年) 利用确定性梯度底部(GD) 的深学习实验揭示了在学习率(LR)和锐度(emph{i.e.})不再像传统优化那样表现(Hessian最大的egen值)时,Cohen 等人(2021年) 的深度学习实验(2021年) 显示了一个阶段 = 稳定(Eos) 的边缘(EoS ) 阶段的隐性正规化新机制。 GD 因非线性损失(EoS) 阶段而导致的GD更新随着最低损失数的某种确定性流动而演变。 这与以前许多关于隐性偏差的结果形成对照,要么依靠无限的更新,要么在梯度上发出噪音。 形式上,任何顺畅的功能($) 和某些定期性条件,这种效果表现在 (1) e- 正常GD},即GD 和 直线值(美元) 和正值损失 美元(LQ) 和正值 美元) 根值 。