In this study, we develop a probabilistic approach to map the parametric uncertainty to the output state uncertainty in first-order hyperbolic conservation laws. We analyze this problem for nonlinear immiscible two-phase transport in heterogeneous porous media in the presence of a stochastic velocity field. The uncertainty in the velocity field can arise from the incomplete description of either porosity field, injection flux, or both. The uncertainty in the total-velocity field leads to the spatiotemporal uncertainty in the saturation field. Given information about the spatial/temporal statistics of the correlated heterogeneity, we leverage method of distributions to derive deterministic equations that govern the evolution of single-point CDF of saturation. Unlike Buckley Leverett equation, the equation for the raw CDF function is linear in space and time. Hereby, we give routes to circumventing the computational cost of Monte Carlo scheme while obtaining the full statistical description of saturation. We conduct a set of numerical experiments and compare statistics of saturation computed with the method of distributions, against those obtained using the statistical moment equations approach and kernel density estimation post-processing of high-resolution Monte Carlo simulations. This comparison demonstrates that the CDF equations remain accurate over a wide range of statistical properties, i.e. standard deviation and correlation length of the underlying random fields, while the corresponding low-order statistical moment equations significantly deviate from Monte Carlo results, unless for very small values of standard deviation and correlation length.


翻译:在本研究中,我们开发了一种概率法,以绘制输出状态不确定性的参数性不确定性,在一阶双曲线保护法中绘制输出状态不确定性的参数性参数性参数性方法。我们分析在随机速率场中,多孔多功能介质的不线性、非不远的两阶段运输问题。速度场的不确定性可能来自对孔径场、注入通量或两者的不完整描述。全速场的不确定性导致饱和场的空间性不确定性。根据相关差异性的空间/时差统计数据,我们利用分布分布法的方法来得出决定单点CDF饱和度演变的确定性平衡方程式。与巴克利·莱弗莱特等式不同,原始CDF功能的等式在时空和时间上都是线性的线性。我们给蒙特卡洛计划计算成本的路径提供了绕行路径,同时获得了饱和度的完整统计描述。我们用一系列数字性实验和计算饱和度的计算方法来计算出分布的数值性,与使用这一统计时时序卡度的精确度的计算结果,同时用这一统计时序度的统计性平方程的计算法性平方程的精确度的计算法性计算法性计算,同时展示的统计性平面的卡度则则显示高度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度,而显示度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度度

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
158+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
npj: 机器学习添视觉—材料缺陷快分析
知社学术圈
6+阅读 · 2018年8月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2018年5月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
npj: 机器学习添视觉—材料缺陷快分析
知社学术圈
6+阅读 · 2018年8月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员