npj: 机器学习添视觉—材料缺陷快分析

2018 年 8 月 18 日 知社学术圈

海归学者发起的公益学术平台

分享信息,整合资源

交流学术,偶尔风月

电子显微镜已广泛应用于各种材料的晶界、杂质等缺陷的分析研究,可为其提供微观结构和性能的详细信息,因而成为材料科学研究的基石。然而,这需要大量的图像才能提取出统计上显著的信息,并需手动完成,既耗时又会因人而异导致结果不一致。若为电子显微镜创建一个强大而灵活的缺陷自动识别和分类平台,将可在图像记录后甚至在图像采集过程中,快速地完成分析任务。

现在,美国威斯康星大学和橡树岭国家实验室的研究团队将机器学习、计算机视觉和图像分析技术相结合,开发了一种自动识别工具;依次应用了级联对象检测器、卷积神经网络和局部图像分析方法,以获得有关缺陷尺寸和缺陷类型的信息。与人工分析相比,自动分析有可能显著提高分析的效率、准确性和可重复性,还可通过日渐显要的自动数据生成方法进行扩展。他们的结果证明,该自动化工具在回溯和精确度方面的表现与人工手动水平相当或更好,在图像/缺陷定量分析指标方面与人类平均水平接近,适用于不同对比度、不同亮度和不同放大倍数的图像。他们的设计有望检测多种缺陷类型,并可能定位、分类、定量测量一系列缺陷类型、多种材料和各种电子显微技术的特征,也值得进一步改进,以便对大数据集作实时分析。


该文近期发表于npj Computational Materials 4:36 (2018),英文标题与摘要如下,点击左下角“阅读原文”可以自由获取论文PDF。



Automated defect analysis in electron microscopic images 


Wei Li, Kevin G. Field & Dane Morgan


Electron microscopy and defect analysis are a cornerstone of materials science, as they offer detailed insights on the microstructure and performance of a wide range of materials and material systems. Building a robust and flexible platform for automated defect recognition and classification in electron microscopy will result in the completion of analysis orders of magnitude faster after images are recorded, or even online during image acquisition. Automated analysis has the potential to be significantly more efficient, accurate, and repeatable than human analysis, and it can scale with the increasingly important methods of automated data generation. Herein, an automated recognition tool is developed based on a computer vison–based approach; it sequentially applies a cascade object detector, convolutional neural network, and local image analysis methods. We demonstrate that the automated tool performs as well as or better than manual human detection in terms of recall and precision and achieves quantitative image/defect analysis metrics close to the human average. The proposed approach works for images of varying contrast, brightness, and magnification. These promising results suggest that this and similar approaches are worth exploring for detecting multiple defect types and have the potential to locate, classify, and measure quantitative features for a range of defect types, materials, and electron microscopic techniques.



扩展阅读

 

npj: 基于结构描述符机器学习

npj: 双金属核壳纳米粒子——热载流子光催化计算设计

npj: 相场模拟—再现复杂的金属材料点腐蚀

npj: 神经网络——细探晶体

npj: 超前预测法——原子结构的局部优化

本文系网易新闻·网易号“各有态度”特色内容

媒体转载联系授权请看下方

登录查看更多
6

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
下载 | 954页《数据可视化》手册
机器学习算法与Python学习
22+阅读 · 2019年1月3日
【学科发展报告】多媒体分析
中国自动化学会
6+阅读 · 2018年9月29日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
2018计算机视觉及机器学习重要会议汇总
极市平台
15+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
5+阅读 · 2018年10月11日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
6+阅读 · 2018年4月23日
VIP会员
相关资讯
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
下载 | 954页《数据可视化》手册
机器学习算法与Python学习
22+阅读 · 2019年1月3日
【学科发展报告】多媒体分析
中国自动化学会
6+阅读 · 2018年9月29日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
2018计算机视觉及机器学习重要会议汇总
极市平台
15+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
相关论文
Arxiv
5+阅读 · 2018年10月11日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
6+阅读 · 2018年4月23日
Top
微信扫码咨询专知VIP会员